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ABSTRACT

Material flow simulations are of increasing importance
for the virtual commissioning of control systems espe-
cially regarding plants in production. Material flow
models for piece goods in literature can be mostly di-
vided into four categories which differ in their suitability
to the requirements of simulations for virtual commis-
sioning. This paper presents an overview of the mate-
rial flow models regarding model description and usage.
It will be shown that the macroscopic flow model has
potential for virtual commissioning. Improvements to
achieve real-time capability through parallelization of
the macroscopic flow model are introduced.

INTRODUCTION

Goods are the reason and the goal of every production.
Consequently, it should be self-evident to take them into
account for machine development and factory planning.
However, there are different points of view.

On the one hand, material flow is the connecting ele-
ment between all plant components. Scheduling of pro-
duction steps depends on the processing times of the
machines involved and on the transport time in between.
Throughput times and stock levels are essential factors
for the cost of production.

On the other hand, material flow as precise movement of
goods and parts is also important for every single ma-
chine. The movement determines the possible geome-
tries and the exact timing. Analysing the material flow
is necessary to determine whether the control system is
working as planned. The precise movement needs to be
considered not only in the machines but also in between.
This paper focuses on this side of the material flow.

The more goods pass a system, the higher is their im-
portance but also the more complex are the calculations.
Particularly in systems with a high throughput rate and
fast moving goods, their precise movement is very im-
portant (Lacour (2012)). This is the case e.g. in bottling
plants (Kadachi and Günthner (2001), Voigt (2004),

Bernhard and Kahe (2008)). Though material flow sim-
ulation is already applied in many domains, there is a
promising approach which could be improved for the
application in virtual commissioning.

MATERIAL FLOW MODELS

Simulation models and tools have to be chosen accord-
ing to the application’s goals and requirements. Quite
often, the particularities are not evident and one has to
know in advance which differences exist (Roessler et al.
(2015)). Material flow models can be sorted in four cat-
egories which are summarized in table 1 and will be ex-
plained below: event-discrete, kinematic, physics-based
and macroscopic flow model (Scheifele et al. (2016)).
The choice has significant influence on the modeling
effort needed, the factors taken into account and the
results available. For virtual commissioning (VC), the
models have to be improved to fulfill all requirements.

Requirements Of Virtual Commissioning

In control engineering, testing of the control system on
a virtual machine is referred to as virtual commissioning
(Wünsch (2008)). VC is part of the development pro-
cess of machines and plants and takes place before the
test at the real prototypes. VC requires a virtual repre-
sentation of the planned machine, a simulation model.
The model consists of a representation of machines and
environment (geometry), the possibilities of movement
and the signals to communicate with the control system.
The simulation has to (Röck (2007), Wünsch (2008), Ho-
her (2017))

• show whether the movements and the processing is
possible as planned,

• prove the control system is working and is capable of
controlling the process as planned,

• indicate whether the control system is able to detect
or prevent errors in the process,

• have deterministic, stable calculations of high accu-
racy,

• be time-deterministic.
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Table 1: Comparison of categories of material models in the light of virtual commissioning

Considered parameters Calculation time Layout Abstraction
Control
connection

Velocities
Geome-
tries of
elements

Forces,
torques,
masses

proportio-
nal to
number

Real-
time
capable

event-discrete - - - partly + 1D– 2D highest -
kinematic + + - + + 3D middle +
physics-based + + + + - 3D lowest +
flow model + - - - -* 2D middle -*

- not considered/not possible/No + considered/possible/Yes * current research

In production systems, the model is the base for a Digi-
tal Twin (Lechler et al. (2019)) which is a digital repre-
sentation of and connected to a physical object (Fuller
et al. (2020)). According to older definitions, the Dig-
ital Twin is identical to the simulation (Shafto et al.
(2012)).
The most demanding variant of VC is a hardware-in-
the-loop (hil) simulation where the whole control sys-
tem including hardware and code is being tested on a
simulation (Pritschow and Röck (2004)). The difference
between real machine and simulation should not be no-
ticeable for the control system. Therefore, the simula-
tion has to provide the same inputs and outputs as the
real machine in the same rate as the control system. The
standard communication cycle time for a programmable
logic controller is 1 ms which is referred to as real-time
(Röck (2007)). This requirement can be particularly
hard to meet (Scheifele et al. (2019)). For a hil simu-
lation, the connection between simulation and control
system should be the same than in the real scenario
which usually is via field bus.
For the VC of plants and especially for single machines,
the material flow is an important aspect. In this con-
text, material flow is the exact movement of piece goods
based on their physical properties and the interaction
with their environment. While the machines are influ-
enced directly by the control system, the influence on
the piece goods is taking place only indirectly through
the behaviour of the machines.

Event-discrete Material Flow Model

The event-discrete material flow model (EDMF) focuses
on time-related parameters. Therefore, it is mostly used
for the scheduling of transportation. The observation
level of the EDMF is on the material exchange between
machines or whole factories. Considered parameters are
quantities of goods and time in form of duration and
points in time. Therefore, the different production steps
and their time have to be known or estimated. The
time steps are not constant but depending on the events
and much larger than the control rate. Since it is a

logic based model, physical behaviour is excluded. The
EDMF does not consider precise movements of the piece
goods. The calculations are mainly based on stochastics
considering average throughput times, failure rates and
demand forecasts.
There are some other models on the level of observation
of the EDMF like agent based and system dynamics
(Roessler et al. (2015)). Because the level of detail of all
of these models is not suitable for VC and they are less
common, the models will not be discussed any further.

Kinematic Material Flow Model

A kinematic model provides position and velocity for
each piece good. The calculations are based on tra-
jectories of machines and piece goods (Scheifele et al.
(2016)). The main application is to test whether the
piece goods can be handled as planned and whether
all the material paths are calculated correctly. Con-
sequently, all the geometries of the machines, of the en-
vironment and of the products or products’ parts have
to be known. As soon as geometries are considered, col-
lisions can be taken into account. The calculation of
collisions can get computationally complex if there are
many bodies (Hoher (2017)). However, the bodies only
have to be kept separate and there are not any momenta
as a result of the collisions. Since physical influences
are ignored, complexity of the calculations is not seen
as problem in research. The calculations are stable and
time-deterministic, even within the control rate of 1 ms.

Physics-based Material Flow Model

Physics-based material flow models (PMF) have the low-
est abstraction level of all four types taking into account
most physical aspects. Usually, PMF are rigid body sim-
ulations without temperature differences. The model is
based on Newton’s law of motion (Göttlich et al. (2014))
where the double-derived position x ∈ IR3 of each piece
good i at time t is the sum of its forces fn,i proportional
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Table 2: Usage of categories of material flow models
Field Requirement Software Thesis Paper

ev
en
t-

d
is
cr
et
e

production
and process
planning,
logistics

time steps de-
termined

SimulateFirst,
pL-SIM, Sim 3D,
FlexSim, AutoMod,
Plant Simulation,
Arena, Experior

Rybicka (2017),
Kudlich (2000),
Voigt (2004)

Wu and Wysk (1989),
Huber and Dangelmaier
(2009), Seidel et al.
(2012), Glatt et al. (2018)

k
in
em

a
ti
c

hil, virtual
commission-
ing

geometries
designed,
trajectories
calculated

ISG-virtuos, Win-
Mod

Hoher (2017) Hoher and Verl (2012)

p
h
y
si
cs
-b
a
se
d

test of control
system

geometries
and materials
determined

Algoryx, Machi-
neering, FEEsim,
VisualComponents,
Sim3D, Experior

Bender (2007),
Spitzweg (2009),
Lacour (2012)

Hoher et al. (2012),
Göttlich et al. (2014),
Neher and Lechler (2015),
Ostergaard and Danjou
(2017), Richter et al.
(2018), Glatt et al. (2019)

fl
ow

m
o
d
el conveyor

belts, opti-
mization

circular/
quadratic
base, no 3D
movements

less studied than
the other models →
not ready for indus-
trial usage

Pfirsching (2018)

Hoher et al. (2012),
Göttlich et al. (2014;
2015; 2018), Prims et al.
(2019), Rossi et al. (2019)

to its mass mi with xi(0) = xi,0 and i = 1, ..., Nn:

miẍi(t) =

Nf
∑

n=1

fn,i(t) (1)

For angular movement with Euler’s equation of motion,
the moments have to be taken into account as well as
the forces which do not apply in the center of mass.
The derived angular velocity ω ∈ IR3 of each piece good
i at time t in dependence of the piece good’s moment of
inertia θi consists of the cross product of the forces f and
of the displacement between the point of application and
the center of mass r ∈ IR3 on one hand, and the sum of
moments τm,i on the other hand with ωi(0) = ωi,0 and
i = 1, ..., Nn:

θiω̇i(t) =

Nf
∑

n=1

fn,i(t)× rn,i(t) +

Mf
∑

n=1

τm,i(t) (2)

In each time step dt, it has to be verified if there is any
collision between any piece good and its environment
or another piece good. In comparison to the machine’s
movement, the piece goods’ movement is not controlled
directly by the control system but is a result of their en-
vironment. The geometry of the individual piece goods
have to be taken into account. Consequently, the com-
putational effort is increasing with increasing number
of piece goods even if bounding boxes instead of com-
plex geometries are used for the collision calculation.
The collision detection and resolution is often the bot-
tleneck in the simulation of material flows (Hoher et al.

(2013)). Consequently, the most information is provided
but there is a risk of not meeting the requirement of
time-determinism.

Macroscopic Flow Model

The latest idea is the examination of piece goods anal-
ogous to fluids which leads to good results (Göttlich
et al. (2014), Rossi et al. (2019)). The piece goods are
not considered separately but as a density distribution
ρ(x, t) : IR2 × IR depending on place x and time t.
Consequently, the movement of the piece goods results
from the static environment and the dynamic interac-
tion between the piece goods. The static velocity vstat

depends on the position x of the piece good. It includes
restrictions like static elements in the environment but
also predetermined velocities for example those of a con-
veyor belt. The dynamic velocity as indirect collision
consideration gets active as soon as a limit density ρmax

is exceeded. It consists of a Heaviside function H and
the term of force I. The relationship can be described
as a non-local hyperbolic partial differential equation
with conservation of mass and therefore conservation of
density with:

∂tρ+∇ρ(vdyn(ρ) + vstat(x)) = 0 (3)

vdyn(ρ) = H(ρ− ρmax)I(ρ) (4)

ρ(x, 0) = ρ0(x), x ∈ IR2 (5)

The equation has been numerically solved with the
Roe method with dimensional splitting which is time-
deterministic (Göttlich et al. (2014)). Decisive for the
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computational effort is the discretization in time and
space. To represent the machines three-dimensional the
MFM has to be combined with another model.

Comparison

The models differ widely especially in their application,
which is outlined in table 2 (non-exhaustive and re-
stricted to control engineering). EDMF will be used at
first during development, often for supply chain man-
agement. The application in control engineering is very
limited. The kinematic models can be applied after the
machines or plants are designed. They allow a first
test of the interaction between mechanic construction
and control code. To use a PMF, the development pro-
cess has to be nearly finished. Details of the machines,
the piece goods and the control system have to be de-
cided. The MFM can be used in a similar phase but
the application is restricted: the piece goods only move
in a plane, there is no overlapping or tilting. More-
over, the piece goods need a circular or quadratic base
area (Prims et al. (2019)). Otherwise their collision be-
haviour is different, they can get wedged easily, which is
not reflected in the model. It is possible as well to com-
bine (parts of) models. For instance a kinematic model
can be combined with some simple physical principles
as gravity (Hoher and Verl (2012), Gulan et al. (2014))
or some physical properties can be taken into account
for an EDMF (Westbrink and Schwung (2018)).
According to table 3, the EDMF and the kinematic
model provide less information for the VC of control
systems. The PMF achieves the best results in terms
of accuracy. The MFM still achieves more results than
the kinematic model, because the trajectories have to
be given for this one and will not be adjusted.

Table 3: Evaluation of categories of material models in
the light of VC

Advantages Disadvantages

event-
discrete

Computing effi-
cient, overview

not detailed, no
precise movement,
no control connec-
tion

kinematic
descriptive repre-
sentation

not detailed, no
collision reactions,
trajectories needed

physics-
based

highest accuracy,
clear representa-
tion

calculation-
intensive

flow
model

independent of
material number,
high accuracy

for few goods rel-
ative calculation-
intensive

The computational effort for the PMF increases with in-
creasing number of piece goods which can lead to com-
putational effort and duration needed for the calcula-

tions too high for the real-time requirements of a control
system. The MFM on the other hand does not calcu-
late collisions directly, it does not even consider single
piece goods. Consequently, the computational effort is
independent of the number of piece goods (cf. figure
1). If it was possible to reduce the calculation time, the
MFM could be a valid alternative or complement to the
PMF. Since there has not been much research on the
MFM, there still is lots of potential. In the following,
details of the MFM will be presented and possibilities
of acceleration proposed.

Figure 1: Calculation time dependent on the number of
piece goods

CONCEPT OF ACCELERATION FOR THE

MACROSCOPIC FLOW MODEL

The density distribution of the MFM according to
Göttlich et al. (2014) consists of Nx×Ny cells with sur-
face dx× dy. In each of these cells, the density ρ(t) has
to be calculated in each time step dt. Therefore, the dy-
namic density ρdyn resulting from the current dynamic
velocity vdyn is calculated at first, and the static density
ρstat resulting from the static velocity vstat afterwards.
In case of the static density, the adjacent cells have to
be taken into account. As far as the dynamic velocities
are concerned, the parameter ǫ is weighting the repul-
sive forces I and the smoothing kernel η is weighting
the density conditions within a convolution as shown in
equation 6.

I(ρ) = −ǫ
∇(η ∗ ρ)

√

1 + ||∇(η ∗ ρ)||2
2

(6)

To reduce the calculation time, several approaches can
be considered:

• The computational effort could be reduced by increas-
ing the cell size. To achieve optimal results, the cell
size represented by dx and dy has to be chosen in
proportion to the time step dt (Rossi et al. (2019)).
Since the time step is determined by the communi-
cation cycle time of the control system, the density
cell size cannot be adapted without downgrading the
results.

• The convolution has a particularly high computa-
tional effort. The smoothing kernel η is weighting the
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whole density distribution to determine the effects at
place x. If the considered area is big, the effects of
the distant cells are rather small. Hence, considera-
tion should be given to the possibility of restricting
the force term to a smaller area.

• If the whole density distribution is taken into account
for the convolution, there is another possibility to re-
duce its calculation time. Since the calculation time
depends for each cell only on the density distribution
of the previous time step, it should be possible to
schedule their calculation in parallel. It could be ben-
eficial to transfer the parallel calculation on a graph-
ics card (GPU) (Panchatcharam et al. (2013)). This
seems to be the most promising approach which will
be presented in the following. The PMF could not
reach time-determinism even with parallelization.

• Depending on the field of application and the goal of
the simulation, the information of the material flow
are not needed in the control system’s rate. In this
case, the material flow simulations can run paral-
lely with a slower simulation rate. To do so a co-
simulation environment with a multi-rate approach
is needed (Scheifele and Verl (2016), Scheifele et al.
(2019)).

• There is another method based on a co-simulation en-
vironment: co-simulation with prediction of coupling
signals. If the material flow is mainly continuous, the
material flow simulation can run in parallel with a
slower simulation rate and the signals of the material
flow model which are relevant for the control system
are predicted for the faster steps of the control system
(Günther (2017), Kienzlen et al. (2020)). The last two
solutions are also applicable for the PMF.

IMPLEMENTATION

Compute unified device architecture (CUDA) is
NVIDIA’s GPU programming model (NVIDIA (2018))
which can be implemented in straight forward C, C++
or Phython. In CUDA, one function (”kernel”) is called
from the CPU (”host”) and invokes multiple calcula-
tions (”threads”) on the GPU (”device”)(Zou et al.
(2009)). For better manageability, the threads are struc-
tured in three dimensional blocks which in turn are
structured in three dimensional grids. The threads of
one block run in parallel, the blocks can run in par-
allel or sequentially depending on the implementation
and the hardware (Luebke (2008)). These simple paral-
lelizations are the advantage of calculations on the GPU
which come with the disadvantage of having to copy
data between CPU and GPU.
The implementation of the MFM has two main parts
as can be seen in figure 2: initialization and simulation
step. The initialization of the model is done once at
the beginning of the simulation. It consists of the ini-
tialization of the initial density distribution ρ0, of the

static velocity field and of the smoothing kernel η. This
is scheduled on the central processing unit (CPU). Af-
terwards, a loop starts which is executed for each sim-
ulation step. Each step, the dynamic density field ρdyn

is calculated whereby a division is applied in the two
spatial directions x and y. This step mainly consists
of the convolution Dj = η ∗ ρi. This part leads to the
highest computational effort why it is scheduled on the
GPU. The static density ρstat is less demanding, there-
fore it can be scheduled on the CPU. The four density
fields (dynamic in x, dynamic in y, static in x and static
in y) get combined to one overall density distribution.
Finally, the overall density distribution has to be given
to another part of the simulation. This usually takes
place on the CPU, therefore, at this point at the latest,
the information has to be copied to the CPU. Alterna-
tively to the output, there could be a post-processing
step to calculate relevant signals for the control system
or information for another simulation.

Figure 2: Implementation of the convolution of a simu-
lation step with CUDA

When implementing with CUDA, there are different
sorts of memory (cf. figure 3): host memory on the
CPU and device memory on the GPU. To use data on
the GPU, it has to be copied to its memory. On the
GPU, there is global memory which can be accessed
from all of the threads. This is the standard sort of
memory which need not be declared explicitly. When
using global memory, one has to make sure that differ-
ent threads will not access the same data. The opposite
is local memory, which can be accessed only from one
thread. In between, there is shared memory which can
be accessed within one block. Its amount is restricted to
an overall limit depending on the graphics card’s prop-

Figure 3: Different sorts of memory within CUDA
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erties. Computational effort is needed to copy data from
the global to the shared memory and back but on the
shared memory, threads from different blocks will not
interfere. The last sort of memory is important for the
data exchange between CPU and GPU: Pinned mem-
ory has to be defined on the CPU. This memory space
is specified for data which has to be exchanged between
CPU and GPU frequently.
To improve the memory usage of the MFM, there can
be taken different steps:

1. The convolution Dj can be scheduled on the GPU.

2. The density distribution of the previous step ρt−1 can
be copied to the shared memory. This way, the differ-
ent blocks do not have to access the global memory
as often and moreover, the different blocks will not
interfere to access the same data.

3. A local variable for each cell of the convolution Dj

can be defined so all the interim results can be calcu-
lated locally. The interim results have to be copied
to the global memory afterwards but with the calcu-
lation locally the global memory has to be accessed
less frequently.

4. Interim results can be calculated in advance and be
reused later on. This idea is also valid for the calcu-
lation on the CPU. For the calculation on the CPU,
this means calculating the interim results only once
and reusing them throughout the loops. For the cal-
culation in CUDA, this means calculating the interim
results in all threads but only once per thread.

5. An alternative to scheduling only the convolution on
the GPU is scheduling the whole simulation step ex-
cluding the output on the GPU as depicted in fig-
ure 4. This way the parallelization can be applied on
bigger parts. The disadvantage is that more infor-
mation has to be copied on the GPU including the
static velocity field in two spatial directions.

Figure 4: Implementation of the whole simulation step
in CUDA

To get an estimation of the computing times, a simple
example was implemented analogously to (Hoher et al.
2012, Göttlich et al. 2014): Circular piece goods are
transported on a conveyor belt against a singularizer
and are thus deflected. The discretization was chosen

with 160 x 220 cells. All of the measurements depend
on this factor. With the motivation that in future as lit-
tle special hardware as possible should be required for
the simulation, a standard PC was used (Intel R© CoreTM

i7 with a possible processor speed of 2.8 GHz, 4 cores,
8 logical processors, 8.0 GB of RAM). For paralleliza-
tion in CUDA a graphics card from NVIDIA is required,
GeForce 940MX was used here (total amount of global
memory 2048 MB, 128 CUDA Cores/MP, Max. dimen-
sion size of a thread block (1024, 1024, 64)). The dou-
ble parallelized implementation is more than ten times
faster than the pure implementation in C++ in this sce-
nario. The usage of shared memory reduces the calcu-
lation time by a further 20 %, the implementation with
local memory by further 15 % and interim results by
further 18 % as shown in figure 5. The computation of
the whole simulation step on the GPU does not change
much. This is because lots of additional information
have to be copied on the GPU. If it would be copied on
the GPU initially, the results would be much better.

Figure 5: Calculation time of a simulation step with
CUDA

CONCLUSION

The simulation of material flow is an important part for
the VC of plants. There are four different categories
of material flow models, three of which can be used for
this purpose and two - the physics-based models and
the macroscopic flow model - obtain results with satis-
fying accuracy. The computational effort of the physics-
based models depends on the number of piece goods why
the calculation time exceeds the real-time of the control
system for a great number of piece goods. The macro-
scopic flow model seems to be a valid alternative in this
case. The initial calculation time is too high so far but
the parallelization on the GPU supports the objective
of achieving a simulation step in real-time of control.
There are already some improvements but more work is
needed to fully achieve this goal.

FUTURE WORK

In order to use the macroscopic flow model effectively
for the virtual commissioning of control systems, a post-
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processing step is necessary to generate signals. This
could be, for example, the calculation of collisions in
the material flow, the calculation of the position of in-
dividual piece goods in certain areas or the calculation
of the outflow. After the design and implementation of
these calculations, the macroscopic flow model can be
integrated in a hil simulation. As a next step, it would
be interesting to combine the physic-based model and
the macroscopic flow model and to switch between the
models depending on the relevant information.
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Abfüllanlagen. Tech. rep., Lehrstuhl für Fördertechnik
Materialfluss Logistik, Garching.

Kienzlen A.; Scheifele C.; and Verl A., 2020. Predict-
ing coupling signals in a material flow real-time co-
simulation with a Kalman filter. In Teti R.; D’Addona
D. M. (Ed.), 13th Conference on Intelligent Compu-
tation in Manufacturing Engineering. Procedia CIRP,
vol. 88, 9–14. doi:10.1016/j.procir.2020.05.002.

Kudlich T., 2000. Optimierung von Materialflußsyste-
men mit Hilfe der Ablaufsimulation. Thesis, Technis-
che Universität München.

Lacour F.F., 2012. Modellbildung für die physik-
basierte virtuelle Inbetriebnahme materialflussinten-
siver Produktionsanlagen. Thesis, Technische Univer-
sität München.

174



Lechler T.; Fischer E.; Metzner M.; Mayr A.; and
Franke J., 2019. Virtual Commissioning - Scientific
review and exploratory use cases in advanced produc-
tion systems. Procedia CIRP, 81, 1125–1130. doi:
10.1016/j.procir.2019.03.278.

Luebke D., 2008. CUDA: Scalable parallel program-
ming for high-performance scientific computing. In
5th International Symposium on Biomedical Imaging.
IEEE, 836–838. doi:10.1109/ISBI.2008.4541126.

Neher P. and Lechler A., 2015. Using game physics en-
gines for hardware-in-the-loop material flow simula-
tions. In International Conference on Advanced Intel-
ligent Mechatronics. IEEE, 1002–1007. doi:10.1109/
AIM.2015.7222670.

NVIDIA (2018), 2018. CUDA C Programming Guide.
NVIDIA Corporation, v9.2 ed.

Ostergaard N.H. and Danjou S., 2017. On numerical
simulation of the dynamics of bottles in conveyor sys-
tems. Journal of Applied Packaging Research, 9, no. 3.

Panchatcharam M.; Sundar S.; Vertrivel V.; Klar A.;
and Tiwari S., 2013. GPU Computing for meshfree
particle method. International Journal of Numerical
Analysis and Modeling, , no. 4, 394–412.

Pfirsching M., 2018. A multi-scale model for mate-
rial flow problems based on a non-local conservation
law: simulation and optimization. Thesis, Universität
Mannheim.
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